Genetic history of the British Isles
The genetic history of the British Isles is the subject of research within the larger field of human population genetics. It has developed in parallel with DNA testing technologies capable of identifying genetic similarities and differences between populations. The conclusions of population genetics regarding the British Isles in turn draw upon and contribute to the larger field of understanding the history of humanity in the British Isles generally, complementing work in linguistics, archeology, history and genealogy.
Research concerning the most important routes of migration into the British Isles is the subject of debate. Apart from the most obvious route across the narrowest point of the English Channel into Kent, other routes may have been important over the millennia, including a land bridge in the Mesolithic period, and also maritime connections along the Atlantic coast.
In addition, the periods of the most important migrations are also contested. While the Neolithic introduction of farming technologies from Europe is frequently proposed as a period of major population change in the British Isles, such technology could either have been learned by locals from a small number of immigrants, or may have been put into effect by colonists who significantly changed the population.
Other potentially important historical periods of migration which have been subject to consideration in this field include the introduction of Celtic languages and technologies (during the Bronze and Iron Ages), the Roman era, the period of Anglo-Saxon influx, the Viking era, the Norman invasion of 1066 and the era of European wars of religion. There are also similarly many potential eras of movement between different parts of the British Isles.
Research projects and influential publications
An international watershed in the publication and discussion of genetic evidence for ancient movements of people was that of Luigi Luca Cavalli-Sforza who used polymorphisms from proteins found within human blood (such as the ABO blood groups, Rhesus blood antigens, HLA loci, immunoglobulins, G-6-P-D isoenzymes, amongst others).[1] One of the lasting proposals of this study with regards to Europe is that within most of Europe, the majority of genetic diversity may best be explained by immigration coming from the southeast towards the northwest or in other words from the Middle East towards Britain and Ireland. He proposed at the time that the invention of farming might be the best explanation for this.
Later published studies used mitochondrial DNA to study the female line of descent. It became possible to use Y chromosome DNA to study male descent. As opposed to large scale sampling within the genome, Y DNA and mitochondrial DNA represent specific types of genetic descent and can therefore reflect only particular aspects of past human movement.
For Britain, major research projects aimed at collecting more data include the Oxford Genetic Atlas Project (OGAP), which was associated with Brian Sykes of Oxford University and more recently the People of the British Isles, also associated with Oxford.[2]
In 2007, Bryan Sykes produced an analysis of 6000 samples from the OGAP project in his book Blood of the Isles.[3] Later, Stephen Oppenheimer in his 2006 book The Origins of the British used the data from Weale et al. (2002), Capelli et al. (2003) and Rosser et al. (2000) for Europe. In opposition to Neolithic origin theories, which remain strong, Sykes and Oppenheimer argued for significant immigration from Iberia into Britain and Ireland. Much of this argument was based upon Y DNA evidence, however by 2010 several major Y DNA studies presented more complete data, showing that the oldest-surviving male lineages had mostly migrated to Britain from the Balkans, and ultimately from the Middle East, not from Iberia.[4][5][6]
Another subject in the literature which has been widely discussed is whether genetics can show signs of Germanic invasions particularly in England. In a widely cited but not unanimously accepted article, Weale et al. (2002) went as far as arguing that the Y DNA data showed signs of a racial "apartheid" in Anglo-Saxon England. That there are relatively clear signs of Germanic contact in parts of Britain is accepted and shown in other studies such as Capelli et al. (2003).
In Ireland population genetic studies have been undertaken by a team under Dan Bradley, including surname studies. Databases on Britain and Ireland, as well as on various surnames are being built up from personal DNA tests, for example at FamilyTreeDNA. A widely reported article in this area was Moore et al. (2006), which provided Y DNA evidence that in some cases Irish surname groups were highly dominated by single male lines, presumed to be those of dynastic founders such as Niall of the Nine Hostages.
Recently use has been made of technologies which can test hundreds of thousands of possible mutation points (SNPs) in the rest of the human genome (the autosomal DNA). The results of these large studies have shown that the main patterns of relatedness between European populations are simply geographical, meaning that the British and Irish are simply most genetically related to the people in neighboring countries. This has not yet led to any new theories concerning migrations.[7][8]
It has been proposed that Y chromosome diversity tends to change more quickly than the overall population, because at least sometimes, some male lines move more quickly than the general population, meaning that the most common Y chromosomes in areas will reflect relatively recent "waves" of human movement.[9]
Mitochondrial DNA
In 2007, Bryan Sykes broke mitochondrial results into twelve haplogroups for various regions of the Isles. He has given maps and proposals concerning ancient migrations for Ireland, Scotland, Wales and England.
Sykes and Oppenheimer have each given nicknames to various haplogroups to allow easier recognition, including the principal ones in the Isles. Below the normal scientific names are given, followed by the popularized "clan names" of Sykes, and in some cases also of Oppenheimer:-
mtDNA
...and within U...
-
Sykes found that the maternal clan (haplogroup) pattern was similar throughout England but with a definite trend from east and north to the south and west. The minor clans are mainly found in the east of England. Sykes found Haplogroup H to be dominant in Ireland and Wales. A few differences were found between north, mid and south Wales. There was a closer link between north and mid Wales that either had with the south. Sykes found that 10% of the Irish population were in Haplogroup U5 called Ursula. He calculated a date of 7300 BC for the entry of this lineage into Ireland. Similar dates were proposed for the other mitochondrial haplogroups, implying that mitochondrial lines in Ireland are far older there than the arrival of Iron Age Celts. Little difference was found between the maternal clans in the four provinces.
Y DNA
In 2007, Bryan Sykes produced an analysis of 6000 samples from the OGAP project in his book Blood of the Isles.[3] designating five main Y-DNA haplogroups for various regions of the Isles. As with mitochondrial haplogroups not only Sykes but also Stephen Oppenheimer chose to popularize the concept by giving them "clan names". The following gives their normal scientific names.[10]
- Haplogroup R1b (Y-DNA). Oisin (Sykes), Ruisko (Oppenheimer). Oppenheimer attempted to divide this in 16 clusters. (See Campbell (2007) for an attempt to "deconstruct" these.)
- Haplogroup I (Y-DNA). Wodan (Sykes), Ivan (Oppenheimer). Oppenheimer was able to divide this into 3 clear clusters. The two most important were
-
- I1 (Ian)
- I2 (Ingert), now known as I2b[11]
Haplogroup R1b is dominant in Western Europe, not only Britain and Ireland. While it was once seen as a lineage connecting the British Isles to Iberia (where it is also common) opinions concerning its origins have changed, with estimates of age tending to go down from Palaeolithic to Neolithic or even younger and analysis of the branching within this line now being seen to support the view that at least concerning the majority of R1b in Europe, it has its roots in the Middle East and has spread northwestward from there. The R1b types found in Britain and Ireland are dominated by R-P312, which on the continent is found mainly west of the Rhine but at least in England there is also a significant presence of R-U106, which is found east of the Rhine and also in North Sea areas such as Denmark and Holland.[4][5][6]
Haplogroup I is a grouping of several quite distantly related lineages. These may be the only pre-Neolithic Y lineages left in Europe.[12] Looking at the three main clusters, according to Rootsi et al. (2004), with up-dated nomenclature according ISOGG:[11]-
- I1a in Rootsi et al., now known as I1, is mainly associated with Scandinavia in modern populations and is common in several parts of England.
- I1b in Rootsi et al., now known as I2a is associated with the Balkans and are not common in Britain and Ireland.
- I1c in Rootsi et al., now known as I2b is less clearly associated with any particular part of Europe.
Haplogroup R1a, a distant cousin of R1b, is most common from Eastern Europe to India. In Britain it is associated with probable Scandinavian immigration during periods of Viking settlement.[13]
Haplogroups E1b1b and J in Europe are regarded as markers of movements from southeastern Europe to northwestern and therefore as a potential markers of introduced technology such as farming.[14] At least in the case of E1b1b a more recent Roman era move from the Mediterranean area has been proposed by Bird (2007).
Uncommon Y haplogroups
Geneticists have found that seven men with a rare Yorkshire surname carry a genetic signature previously found only in people of African origin. All the men had haplogroup A1, a Y chromosome genetic marker which is west African specific. Haplogroup A1 is rare and has only ever been found 25 times, again only in people of African origin. Haplogroup A1 is a subclade of Haplogroup A which geneticists believe originated in Eastern or Southern Africa. The individuals had no knowledge of any African heritage in their family. The researchers wondered if the presence of this haplogroup in Yorkshire could stem from the recruitment of Africans for the construction of Hadrian's Wall by the Romans or result from intermarriage with an African slave, some of whom rose quite high in society.[15] According to Bryan Sykes, some English people's genetics suggest that they are "descended from north African, Middle Eastern and Roman clans", and that "although the Romans ruled from AD 43 until 410, they left a tiny genetic footprint."[16]
In the North Welsh town of Abergele there is a very high percentage of haplogroup E1b1b1 (33%), which is thought to have dispersed around Europe mainly from the Balkans.[14]
Geneticists have shown that former American president Thomas Jefferson, who might have been of Welsh descent, along with two other British men out of 85 British men with the surname Jefferson, carry the rare Y chromosome marker T which is typically found in East Africa and the Middle East. Haplogroup T is rare in Europe but phylogenetic network analysis of its Y-STR (short tandem repeat) haplotype shows that it is most closely related to an Egyptian T haplotype. The presence of scattered and diverse European haplotypes within the network is nonetheless consistent with Jefferson's patrilineage belonging to an ancient and rare indigenous European type.[17]
See also
|
|
|
Molecular Anthropology portal |
|
Evolutionary biology portal |
|
External links
References
- Notes
Literature
- Balaresque et al.; Bowden, Georgina R.; Adams, Susan M.; Leung, Ho-Yee; King, Turi E.; Rosser, Zoë H.; Goodwin, Jane; Moisan, Jean-Paul et al. (2010), Penny, David, ed., "A Predominantly Neolithic Origin for European Paternal Lineages", PLoS Biol. 8 (1): e1000285, doi:10.1371/journal.pbio.1000285, PMC 2799514, PMID 20087410, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2799514
- Bird, Steven (2007), "Haplogroup E3b1a2 as a Possible Indicator of Settlement in Roman Britain by Soldiers of Balkan Origin", Journal of Genetic Genealogy 3 (2), http://www.jogg.info/32/bird.htm
- Bowden et al.; Balaresque, P.; King, T. E.; Hansen, Z.; Lee, A. C.; Pergl-Wilson, G.; Hurley, E.; Roberts, S. J. et al. (2008), "Excavating Past Population Structures by Surname-Based Sampling: The Genetic Legacy of the Vikings in Northwest England", Molecular Biology and Evolution 25 (2): 301–309, doi:10.1093/molbev/msm255, PMC 2628767, PMID 18032405, http://mbe.oxfordjournals.org/cgi/content/full/25/2/301
- Bramanti et al.; Thomas, MG; Haak, W; Unterlaender, M; Jores, P; Tambets, K; Antanaitis-Jacobs, I; Haidle, MN et al. (2009), "Genetic discontinuity between local hunter-gatherers and central Europe's first farmers", Science 326 (5949): 137–40, doi:10.1126/science.1176869, PMID 19729620, http://www.sciencemag.org/cgi/content/abstract/1176869
- Campbell (2007), "Geographic Patterns of R1b in the British Isles – Deconstructing Oppenheimer", JOGG, http://www.jogg.info/32/campbell.htm
- A study headed by Dr Bradley was published in the American Journal of Human Genetics. Geneticists find Celtic links to Spain and Portugal
- Capelli et al., Cristian; Redhead, Nicola; Abernethy, Julia K.; Gratrix, Fiona; Wilson, James F.; Moen, Torolf; Hervig, Tor; Richards, Martin et al. (2003), "A Y Chromosome Census of the British Isles", Current Biology 13 (11): 979–84, doi:10.1016/S0960-9822(03)00373-7, PMID 12781138, http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VRT-48PV5SH-12&_user=10&_coverDate=05%2F27%2F2003&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0eb0c8ff85bde2ebc2ef136619f57e7a also here [1].
- Cavalli-Sforza, LL (1997), "Genes, Peoples and Languages", PNAS 94 (15): 7719–24, Bibcode 1997PNAS...94.7719C, doi:10.1073/pnas.94.15.7719, PMC 33682, PMID 9223254, http://www.pnas.org/content/94/15/7719.full, retrieved 2009-07-22
- Chiaroni et al., J (2009), "Y chromosome diversity, human expansion, drift and cultural evolution", Proceedings of the National Academy of Sciences of the United States of America 106 (48): 20174:20179, http://www.pnas.org/content/106/48/20174
- Collard et al; Edinborough, Kevan; Shennan, Stephen; Thomas, Mark G. (2010), "Radiocarbon evidence indicates that migrants introduced farming to Britain]", Journal of Archaeological Science 37 (4): 866–870, doi:10.1016/j.jas.2009.11.016
- Cruciani et al., F.; La Fratta, R.; Trombetta, B.; Santolamazza, P.; Sellitto, D.; Colomb, E. B.; Dugoujon, J.-M.; Crivellaro, F. et al. (2007), "Tracing Past Human Male Movements in Northern/Eastern Africa and Western Eurasia: New Clues from Y-Chromosomal Haplogroups E-M78 and J-M12", Molecular Biology and Evolution 24 (6): 1300–1311, doi:10.1093/molbev/msm049, PMID 17351267, http://mbe.oxfordjournals.org/cgi/reprint/24/6/1300 Also see Supplementary Data.
- Cruciani et al. (2010), "Strong intra- and inter-continental differentiation revealed by Y chromosome SNPs M269, U106 and U152", Forensic Science International: Genetics, doi:10.1016/j.fsigen.2010.07.006
- Gibbons, Anne (2000), "Evolutionary Genetics: Europeans Trace Ancestry to Paleolithic People", Science 290 (5494): 1080–1081, doi:10.1126/science.290.5494.1080, PMID 11185000, http://www.sciencemag.org/cgi/content/summary/sci;290/5494/1080
- Hill, C. Origins of the English
- Hill et al. (2000), "Y-chromosome variation and Irish origins", Nature 404, http://myweb.tiscali.co.uk/heaven/dnairish.pdf.pdf
- Jobling, In the name of the father: surnames and genetics, http://homepage.eircom.net/~ihdp/ihdp/documents/SurnamesForWeb.pdf
- Jobling; Tyler-Smith, THE HUMAN Y CHROMOSOME AN EVOLUTIONARY MARKER COMES OF AGE, http://homepage.eircom.net/~ihdp/ihdp/documents/Jobling-NRG.Review.pdf
- King et al.; Parkin, Emma J; Swinfield, Geoff; Cruciani, Fulvio; Scozzari, Rosaria; Rosa, Alexandra; Lim, Si-Keun; Xue, Yali et al. (2007), "Africans in Yorkshire? The deepest-rooting clade of the Y phylogeny within an English genealogy", European Journal of Human Genetics 15 (3): 288–293, doi:10.1038/sj.ejhg.5201771, PMC 2590664, PMID 17245408, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2590664
- King et al.; Bowden, Georgina R.; Balaresque, Patricia L.; Adams, Susan M.; Shanks, Morag E.; Jobling, Mark A. (2007b), "Thomas Jefferson's Y chromosome belongs to a rare European lineage", American Journal of Physical Anthropology 132 (4): 584–589, doi:10.1002/ajpa.20557, PMID 17274013, http://www3.interscience.wiley.com/cgi-bin/abstract/114108057/ABSTRACT?CRETRY=1&SRETRY=0
- King; Jobling (February 2009), "Founders, Drift, and Infidelity: The Relationship between Y Chromosome Diversity and Patrilineal Surnames", Molecular Biology and Evolution 26 (5): 1093–1102, doi:10.1093/molbev/msp022, PMC 2668828, PMID 19204044, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2668828
- King; Jobling (August 2009), "What's in a name? Y chromosomes, surnames and the genetic genealogy revolution", Trends in Genetics 25 (8): 351–360, doi:10.1016/j.tig.2009.06.003, PMID 19665817, http://www.cell.com/trends/genetics/abstract/S0168-9525%2809%2900133-4 . Also here [2]
- Malmström et al 2009
- McEvoy; Bradley (2006), "Y-chromosomes and the extent of patrilineal ancestry in Irish surnames", Hum Genet 119 (1–2): 212–9, doi:10.1007/s00439-005-0131-8, PMID 16408222
- McEvoy et al.; Brady, C; Moore, LT; Bradley, DG (2006), "The scale and nature of Viking settlement in Ireland from Y-chromosome admixture analysis", Eur J Hum Genet 14 (12): 1228–94, doi:10.1038/sj.ejhg.5201709, PMID 16957681
- McEvoy et al.; Richards, M; Forster, P; Bradley, DG (2004), "The Longue Durée of Genetic Ancestry: Multiple Genetic Marker Systems and Celtic Origins on the Atlantic Facade of Europe", Am. J. Hum.Genet. 75 (4): 693–702, doi:10.1086/424697, PMC 1182057, PMID 15309688, http://www.journals.uchicago.edu/AJHG/journal/issues/v75n4/41464/41464.html
- Miles, David. The Tribes of Britain,
- Mithen, Steven 2003. After the Ice: A Global Human History 20,000-5000 BC. Phoenix (Orion Books Ltd.), London. ISBN 978-0-7538-1392-8
- Moore et al.; McEvoy, Brian; Cape, Eleanor; Simms, Katharine; Bradley, Daniel G. (2006), "A Y-Chromosome Signature of Hegemony in Gaelic Ireland", Am J Hum Genet. 78 (2): 334–338, doi:10.1086/500055, PMC 1380239, PMID 16358217, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1380239
- Myres, Natalie (2010), "A major Y-chromosome haplogroup R1b Holocene effect in Central and Western Europe", European Journal of Human Genetics
- O'Dushlaine et al.; Morris, Derek; Moskvina, Valentina; Kirov, George; Consortium, International Schizophrenia; Gill, Michael; Corvin, Aiden; Wilson, James F et al. (2010a), "Population structure and genome-wide patterns of variation in Ireland and Britain", European Journal of Human Genetics 18 (11): 1248–1254, doi:10.1038/ejhg.2010.87, PMC 2987482, PMID 20571510, http://www.nature.com/ejhg/journal/vaop/ncurrent/abs/ejhg201087a.html
- O'Dushlaine et al.; McQuillan, Ruth; Weale, Michael E; Crouch, Daniel J M; Johansson, Åsa; Aulchenko, Yurii; Franklin, Christopher S; Polašek, Ozren et al. (2010b), "Genes predict village of origin in rural Europe", European Journal of Human Genetics 18 (11): 1269–1270, doi:10.1038/ejhg.2010.92, PMC 2987479, PMID 20571506, http://www.nature.com/ejhg/journal/vaop/ncurrent/abs/ejhg201092a.html
- Oppenheimer, Stephen (2006), The Origins of the British: A Genetic Detective Story, Constable and Robinson, ISBN 1845291581
- Rootsi et al.; Kivisild, Toomas; Benuzzi, Giorgia; Help, Hela; Bermisheva, Marina; Kutuev, Ildus; Barać, Lovorka; Peričić, Marijana et al. (July 2004), "Phylogeography of Y-chromosome haplogroup I reveals distinct domains of prehistoric gene flow in europe", Am. J. Hum. Genet. 75 (1): 128–37, doi:10.1086/422196, PMC 1181996, PMID 15162323, http://linkinghub.elsevier.com/retrieve/pii/S0002-9297(07)62002-3.
- Rosser et al.; Zerjal, T; Hurles, M; Adojaan, M; Alavantic, D; Amorim, A; Amos, W; Armenteros, M et al. (2000), "Y-chromosomal diversity in Europe is clinal and influenced primarily by geography", Americal Journal of Human Genetics 67 (6): 1526–43, doi:10.1086/316890, PMC 1287948, PMID 11078479, http://www.ajhg.org/AJHG/abstract/S0002-9297(07)63221-2
- Stringer, Chris. 2006. Homo Britanicus. Penguin Books Ltd., London. ISBN 978-0-713-99795-8.
- Sykes, Bryan (2001), The Seven Daughters of Eve
- Sykes, Bryan (2006title=The Blood of the Isles), ISBN 0593056523
- Thomas et al. (2006), "Evidence for an apartheid-like social structure in early Anglo-Saxon England", Proceedings of the Royal Society 273 (1601): 2651–2657, doi:10.1098/rspb.2006.3627, PMC 1635457, PMID 17002951, http://rspb.royalsocietypublishing.org/content/273/1601/2651.full.pdflast2=Stumpf
- Weale et al.; Weiss, DA; Jager, RF; Bradman, N; Thomas, MG (2002), "Y Chromosome Evidence for Anglo-Saxon Mass Migration", Mol. Biol. Evol. 19 (7): 1008–1021, PMID 12082121, http://mbe.oxfordjournals.org/cgi/reprint/19/7/1008.pdf
- Wilson et al.; Weiss, DA; Richards, M; Thomas, MG; Bradman, N; Goldstein, DB (2000), "Genetic evidence for different male and female roles during cultural transitions in the British Isles", PNAS 98 (9): 5078–5083, Bibcode 2001PNAS...98.5078W, doi:10.1073/pnas.071036898, PMC 33166, PMID 11287634, http://www.pnas.org/content/98/9/5078.full
- Wright (2009), "A Set of Distinctive Marker Values Defines a Y-STR Signature for Gaelic Dalcassian Families", JOGG, http://www.jogg.info/51/files/Wright.htm
|
|
|
|
Politics |
|
|
Geography |
Island groups
|
|
|
Lists of islands of
|
|
|
|
History |
Current states
and dependencies
|
|
|
Former states
|
|
|
|
Society |
|
|